WSPM: Wavelet-based statistical parametric mapping
نویسندگان
چکیده
Recently, we have introduced an integrated framework that combines wavelet-based processing with statistical testing in the spatial domain. In this paper, we propose two important enhancements of the framework. First, we revisit the underlying paradigm; i.e., that the effect of the wavelet processing can be considered as an adaptive denoising step to "improve" the parameter map, followed by a statistical detection procedure that takes into account the non-linear processing of the data. With an appropriate modification of the framework, we show that it is possible to reduce the spatial bias of the method with respect to the best linear estimate, providing conservative results that are closer to the original data. Second, we propose an extension of our earlier technique that compensates for the lack of shift-invariance of the wavelet transform. We demonstrate experimentally that both enhancements have a positive effect on performance. In particular, we present a reproducibility study for multi-session data that compares WSPM against SPM with different amounts of smoothing. The full approach is available as a toolbox, named WSPM, for the SPM2 software; it takes advantage of multiple options and features of SPM such as the general linear model.
منابع مشابه
Statistical Parametric Mapping of Functional MRI data Using Spectral Graph Wavelets
In typical statistical parametric mapping (SPM) of fMRI data, the functional data are pre-smoothed using a Gaussian kernel to reduce noise at the cost of losing spatial specificity. Wavelet approaches have been incorporated in such analysis by enabling an efficient representation of the underlying brain activity through spatial transformation of the original, un-smoothed data; a successful fram...
متن کاملAnatomically-adapted graph wavelets for improved group-level fMRI activation mapping
A graph based framework for fMRI brain activation mapping is presented. The approach exploits the spectral graph wavelet transform (SGWT) for the purpose of defining an advanced multi-resolutional spatial transformation for fMRI data. The framework extends wavelet based SPM (WSPM), which is an alternative to the conventional approach of statistical parametric mapping (SPM), and is developed spe...
متن کاملWavelet-Based Statistical Analysis in Functional Neuroimaging
Wavelet-based analysis versus Gaussian smoothing in statistical parametric mapping (SPM) for detecting and analyzing brain activity from functional magnetic resonance imaging (fMRI) data is presented. Detection of activation in fMRI data can be performed in the wavelet domain by a coefficient-wise statistical t-test. The link between the wavelet analysis and SPM is based on two observations: (i...
متن کاملIntegrated wavelet processing and spatial statistical testing of fMRI data.
We introduce an integrated framework for detecting brain activity from fMRI data, which is based on a spatial discrete wavelet transform. Unlike the standard wavelet-based approach for fMRI analysis, we apply the suitable statistical test procedure in the spatial domain. For a desired significance level, this scheme has one remaining degree of freedom, characterizing the wavelet processing, whi...
متن کاملWavelet-based parametric functional mapping of developmental trajectories with high-dimensional data.
The biological and statistical advantages of functional mapping result from joint modeling of the mean-covariance structures for developmental trajectories of a complex trait measured at a series of time points. While an increased number of time points can better describe the dynamic pattern of trait development, significant difficulties in performing functional mapping arise from prohibitive c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 37 4 شماره
صفحات -
تاریخ انتشار 2007